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Abstract—Matrix tri-factorizations (MTFs) aim to decompose
an input matrix X into the product of three factor matrices,
instead of only two as in standard matrix factorization (MF). In
contrast to MF, MTF is able to cluster both rows and columns
of X while quantifying the relationship among these two groups
of clusters. When dealing with binary input matrices, Boolean
matrix factorization (BMF) is a natural extension of MF. In this
work we focus on Boolean matrix tri-factorization (BMTF) that
extends BMF to the tri-factorization framework. We first show an
identifiability result for BMTF, namely, we show that the factors
are unique under certain sparsity conditions. Then we propose
an algorithm to compute the factors of BMTF, and perform
numerical experiments to show how it performs on synthetic
and real data.

Index Terms—Boolean matrix tri-factorization, block coordi-
nate descent,integer programming.

I. INTRODUCTION

Given an input matrix X, matrix factorization models aim
to approximate it as the product of two matrices, W and H,
which are called the factors. Depending on the application,
we can impose constraints on the factors. Examples include
the singular value decomposition (SVD) where the factors
are orthogonal, sparse PCA where the factors are sparse [1],
nonnegative matrix factorization (NMF) where the factors have
nonnegative elements [2], and binary matrix factorization and
Boolean matrix factorizations (BMF) where the factors have
elements in {0, 1} [3]–[5]. Applications include document
clustering, hyperspectral unmixing and recommender systems;
see, e.g., [6], [7]. As an extension to matrix factorizations,
matrix tri-factorization (MTF) models aim to decompose the
input matrix into three factors. In this paper, we focus on the
following definition, using the Frobenius norm to quantify the
error of the approximation.

Definition 1 (MTF). Given a matrix X ∈ Rm×n and factor-
ization ranks (r1, r2), MTF aims to find matrices W ∈ Rm×r1 ,
S ∈ Rr1×r2 and H ∈ Rr2×n that solve

min
W∈Rm×r1 ,S∈Rr1×r2 ,H∈Rr2×n

∥X−WSH∥2F .

Nonnegative MTF (NMTF) requires that the factors, W, S
and H, are component-wise nonnegative. This leads to an easy
interpretation of NMTF: the columns of W (resp. rows of H)
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provide a soft clustering of the rows (resp. columns) of X into
r1 (resp. r2) clusters: Wik indicates the membership value of
the ith row of X in the kth row cluster, Hℓj indicates the
membership value of the jth column of X in the ℓth column
cluster, while Skℓ indicates the interaction between the kth
row cluster and the ℓth column cluster.

A first variant of NMTF was explored in [8], adding
orthogonality constraints, W⊤W = Im and H⊤H = In,
where Im denotes the m-by-m identity matrix. Orthogonality
imposes that the clusters of rows and columns are disjoint
since W ≥ 0 and W⊤W = Im implies that W has at most
one non-zero entry per row, and similarly for the columns
of H. They proposed multiplicative update algorithms and
applied them for document clustering. There are numerous
other works exploring NMTF in other contexts; see, e.g., [9]–
[12] and the references therein.
Contribution and outline of the paper. This paper introduces
Boolean matrix tri-factorization (BMTF) which, to the best of
our knowledge, has not been explored yet in the literature.
A closely related model was proposed in [13] where W
and H were restricted to be columns and rows of X, resp.,
while [13] did not consider identifiability nor interpretability
aspects which is a central focus of our work. In Section II, we
recall the definition of BMF and formally define BMTF. In
Section III, we discuss the identifiability of BMTF and prove
identifiability with orthogonality constraints. In Section IV, we
describe our proposed block coordinate descent algorithm for
BMTF. We also provide a refinement procedure after updating
the factors W and H to generate sparser and more expressive
solutions. In Section V, we perform numerical experiments to
assess the performance of our proposed algorithm on synthetic
and real datasets. Finally, in Section VI we conclude the paper
with some observations and future research directions.

II. BOOLEAN MATRIX TRI-FACTORIZATION

Let us first define the matrix Boolean product and BMF.

Definition 2 (Boolean product). Given two Boolean matrices,
W ∈ {0, 1}m×r and H ∈ {0, 1}r×n, their Boolean product
is denoted W ◦ H ∈ {0, 1}m×n and is defined for all i, j
as (W ◦H)ij =

∨r
k=1 WikHkj , where ∨ is the logical OR

operation (that is, 0 ∨ 0 = 0, 1 ∨ 0 = 0 ∨ 1 = 1 ∨ 1 = 1).
Interestingly, W◦H = min(1,WH) where WH is the usual
matrix product between W and H.IC
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Definition 3 (BMF). Given a Boolean matrix X ∈ {0, 1}m×n

and a factorization rank r, BMF aims to find matrices W ∈
{0, 1}m×r and H ∈ {0, 1}r×n that minimize ∥X−W◦H∥2F .

BMF has been used in medical domains [14]–[16] and rec-
ommender systems [17], [18]; see the survey paper [5] for
more details and applications. In this paper, we consider a
Boolean tri-factorization model that gives the opportunity for
a more refined and flexible analysis of binary datasets. A two-
factor model as BMF decomposes the data matrix X as the
sum of r communities, W(:, k)H(k, :) for k = 1, 2, . . . , r,
where a community is made of a cluster of rows and a
cluster of columns. The kth cluster of rows, defined as
{i | W(i, k) = 1}, can only interact with the kth cluster of
columns, {j | H(k, j) = 1}, and the number of cluster of
rows and columns must be the same. A three-factorization
model allows for any interactions between these clusters, and
for a different number of clusters in both dimensions. Let us
define BMTF formally.

Definition 4 (BMTF). Given a Boolean matrix X ∈
{0, 1}m×n and factorization ranks (r1, r2), BMTF aims to find
W ∈ {0, 1}m×r1 , S ∈ {0, 1}r1×r2 and H ∈ {0, 1}r2×n that
minimize ∥X−W ◦ S ◦H∥2F .

BMTF is able to detect
• r1 clusters1 for the rows of X, defined as {i | W(i, k) = 1}
for k = 1, 2, . . . , r1,
• r2 clusters for the columns of X, defined as
{j | H(ℓ, j) = 1} for ℓ = 1, 2, . . . , r2,
• the interactions between these clusters via the matrix S since
X ≈

∑r1
k=1

∑r2
ℓ=1 W(:, k)S(k, ℓ)H(ℓ, :).

For example, let X be a data set where the rows correspond
to animals and the columns represent characteristics (e.g., ‘has
fins’, ‘flies’, ‘has 4 legs’), while X(i, j) = 1 if animal i has the
characteristic j. BMTF can not only find clusters of animals
(in W) and characteristics (in H), but also it can link the two
sets of clusters through the factor S; e.g., a cluster of fishes
to a cluster of their characteristics such as ‘aquatic’, and ‘has
fins’; see Section V for a real-world example. In the next two
sections, we discuss the identifiability of BMTF, and then we
propose an algorithm to compute solutions to BMTF.

III. IDENTIFIABILITY VIA ORTHOGONALITY

A BMTF, X=W◦S◦H, is identifiable/unique if any other
BMTF of X can only be obtained via permutations, that is, for
any other BMTF X=W′◦S′◦H′ of the same size, we have
W′=W(:, π1), S′=S(π1, π2), and H′=W(π2, :), for some
permutations π1 of {1, 2, . . . , r1} and π2 of {1, 2, . . . , r2}.

It is crucial to note that when r1 ̸= r2, plain BMTF is never
identifiable (that is, BMTF without additional constraints).
Assume w.l.o.g. that r1 > r2 and let X = W ◦ S ◦ H be
a BMTF. Let us show that we can always construct another
BMTF of X which cannot be obtained as a permutation of
W ◦ S ◦H. There are two cases:

1Note that the clusters do not need to be disjoint.

• If a column of W is equal to zero, say W(:, k) = 0, then
the corresponding row of S, S(k, :), can take any value and
the BMTF is not identifiable.
• Otherwise, another BMTF is given by

W′ = [W ◦ S,0m×(r1−r2)],S
′ = [Ir2 ;0(r1−r2)×r2 ],H

′ = H,

where 0a×b is the a-by-b all-zero matrix, so that W′ has r1−
r2 zero columns. Another way to make this observation is to
realize that BMTF is an overparametrized BMF model, since
W◦S◦H = (W◦S)◦H = W◦(S◦H). Hence, to be able to
provide additional insight on the data set and to be identifiable,
BMTF requires additional constraints. For example, a natural
goal would be to look for the sparsest W and H to identify
the smallest clusters that explain the data. Let us prove that
BMTF is identifiable under the conditions that the clusters are
disjoint, or equivalently that the columns of W (resp. rows of
H) are orthogonal. Before proving this result, let us provide
a definition and a lemma.

Definition 5 (Orthogonal BMTF). Orthogonal BMTF is the
BMTF problem with the additional constraints that W(:
, i)⊤W(:, j) = 0 for all i ̸= j and H(k, :)H(p, :)⊤ = 0 for
all k ̸= p.

Lemma 1. Let S ∈ {0, 1}r1×r2 have distinct non-zero rows
and columns. Then the unique exact orthogonal BMTF of S
with ranks (r1, r2) is Ir1 ◦ S ◦ Ir2 , up to permutations.

Proof. Let S=W◦S◦H be an orthogonal BMTF of S. Be-
cause S has no zero columns, and H has at most a single
non-zero entry per column, each column of S is equal to
a column of W◦S′. Moreover, since the columns of S are
distinct and non-zero, and W◦S′ has r2 columns, H must be
a permutation of the identity. Using the same argument on
the rows, we conclude that W must be a permutation of the
identity.

Theorem 1. Let X = W ◦ S ◦ H be an orthogonal BMTF
with ranks (r1, r2) where each column of W and H⊤ has
a least one non-zero element (no cluster is empty), and S ∈
{0, 1}r1×r2 has distinct non-zero rows and columns. Then X
has a unique orthogonal BMTF.

Proof. The uniqueness of W and H follows from the unique-
ness of ONMF [7, Th 4.40, p.136]. Let us recall this result:
if X = AB where B ≥ 0 has orthogonal rows, and
A has non-multiple columns, then (A,B) is an identifiable
ONMF. Since W and H⊤ has orthogonal columns, we have
W◦S◦H = WSH. Applying the uniqueness result of ONMF
to (WS)H and W(SH), we have that H is unique if WS
has non-multiple columns and W is unique if SH has non-
multiple rows. Since W has no zero column and is binary,
W contains the identity matrix, hence the matrix S appears
as a submatrix of WS. Since S has distinct columns, WS
also has. The same argument applies to SH.

Finally, since W and H are unique and contain the identity
as a submatrix, S has to be unique since Ir1SIr2 is the only
orthogonal BMTF of S; see Lemma 1.
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IV. BLOCK-COORDINATE DESCENT FOR BMTF

In this section, we propose a block-coordinate descent
(BCD) method to solve BMTF. It relies on our previous work
that proposed a BCD scheme for BMF [19]. The scheme
is a standard approach for matrix and tensor factorizations:
optimize over each factor individually, in our case W, S and
then H, while the others are fixed. To optimize W, we need to
solve m independent Boolean least squares (BoolLS) problem:

min
W(i,:)∈{0,1}r1

∥X(i, :)−W(i, :)H∥2F . (1)

Each subproblem has only r1 binary variables and can be
solved relatively fast using an integer programming software,
and we use Gurobi [20]. For H, we need to solve n BoolLS
in r2 variables, one for each column of H. Note however that
the worst case complexity is O(m2r1+n2r2). The update of S
needs to be handled slightly differently. Using the property that
vec(ABC) = (C⊤ ⊗A) vec(B), where ⊗ is the Kronecker
product and vec vectorizes a matrix as a vector column wise,
the problem in S is a BoolLS in r1r2 variables:

min
S∈{0,1}r1×r2

∥ vec(X)−min
(
1, (H⊤⊗W) vec(S)

)
∥2F , (2)

with worst-case complexity O(2r1r2).
Imposing sparsity. As explained in Section III, BMTF
is in general not identifiable unless additional constraints
are imposed. We consider sparsity constraints, and generate
sparse solutions by adding explicit constraints on the rows
of W (resp. columns of H) when solving (1): for all i,∑r1

k=1 W(i, k) ≤ KW , where 1 ≤ KW ≤ r1 is a sparsity
parameter, and similarly for H. For example, setting KW=1
corresponds to the orthogonality constraint discussed in Sec-
tion III: each row of X belongs to at most one cluster. Sparsity
is a natural constraint as it corresponds to identify the smallest
clusters that explain the data.
Generating sparser and more expressive solutions. When
r1 > r2, we have observed that BCD often generates W’s with
zero columns, because of the identifiability issues discussed
in Section III. In order to generate sparser solutions and
avoid rank-deficient ones, we resort to a refinement procedure
that will generate sparser and more expressive solutions. This
procedure is inspired by [21], and has been used recently
in [22] for tensor factorizations. Let W∈{0, 1}m×r1 , and
assume that the support of W(:, i) (that is, the set of indices
corresponding to non-zero entries) contains that of W(:, j).
Then we construct (W′,S′) such that W′◦S′=W◦S and W′

is sparser than W: W′(:, i)=W(:, i)−W(:, j), S′(i, :)=S(i, :
) ∨ S(j, :), and the other columns of W′ (resp. rows of S′)
are equal to that of W (resp. S). Using this observation, the
lemma below follows (the formal proof is straightforward and
will be described in an extended version of the paper).

Lemma 2. Let W ∈ {0, 1}m×r1 have distinct columns. Let
P ∈ {−1, 0, 1}r1×r1 and Q ∈ {0, 1}r1×r1 be as follows:
(1) P(i, i) = Q(i, i) = 1 for all i, and
(2) P(j, i) = −1 and Q(j, i) = 1 for all i ̸= j such that the
support of W(:, i) contains that of W(:, j).

Then W=W′ ◦ Q, where W′=max(0,WP) ∈ {0, 1}m×r1

is sparser than W (since P has negative entries on the off-
diagonal) and more expressive2 in BMTF since W◦S = W′◦
(Q ◦ S) = W′ ◦ S′ for any S and for S′ = Q ◦ S.

Note that if W has two identical columns, one of them
can be set to zero, and S can be updated accordingly without
changing W ◦ S. To reinitialize zero columns of W (and
similarly for rows of H), we set a single entry to 1, at the
position where the row of the residual R = X−W ◦ S ◦H
has the most entries equal to one.

To summarize, we propose the following refinement pro-
cedure: (i) set to zero duplicated columns of W, (ii) make the
W sparser and more expressive via Lemma 2, (iii) reinitialize
zero columns with a single non-zero entry as described above.
Initialization. We initialize the matrix W either by randomly
sampling r1 columns of X or by binarizing an NMF solution
of X, as done in [19]. W.l.o.g. we assume r1 ≥ r2 (otherwise,
transpose X), and the matrix S is initialized with the identity
matrix Ir2 while the remaining rows are filled with a single 1
in random positions. Finally, here is our proposed algorithm:

BCD algorithm for BMTF
Input: X ∈ {0, 1}m×n, ranks (r1, r2), sparsity KW , KH

0. Initialize W∈{0, 1}m×r1 and S∈{0, 1}r1×r2 as above.
ṅoindent 1. while W, S or H change

1.1. Update H by column with BoolLS with sparsity KH ,
and perform the refinement procedure.

1.2. Update S by solving the BoolLS (2).
1.3. Update W by row (1) with sparsity KW ,

and perform the refinement procedure.
1.4. Update S again by solving the BoolLS (2).

The above steps ensure that the BCD scheme generates a
sequence of solutions with non-increasing objective function.

V. NUMERICAL EXPERIMENTS

All experiments in this section are performed on Julia
v.1.9.2 with Gurobi version 11 on a laptop with an intel i7
1255U processor @ 1.7 GHz and 16 GB RAM.
Synthetic experiment. We first construct an orthogonal
BMTF as follows: X=W◦S◦H∈{0, 1}120×80 where W ∈
{0, 1}120×7 has one non-zero element per row. Each column
of W has 17=⌊120/7⌋ non-zero elements, and the last one
has 18. The same procedure is used to generate the rows of
H. For S, each row has 2 non-zero elements: We list all the
possible binary vectors of dimension 5(= r2) with 2 entries
equal to one, and pick 7(= r1) of them randomly as the
rows of S. Then, to make the problem more challenging, we
add to W one nonzero per row at a random position, and
then one nonzero per columns of H. We denote (zW , zS , zH)
the number of non-zeros per row of W, per row of S and
per column of H. For each experimental setting, we run our
algorithm with 25 random initializations (we use the NMF-
based initialization for W) and keep the best solution (unless

2That is, any BMTF generated using W can also be generated using W′.
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it finds a solution with zero error in which case we stop it),
and we repeat this procedure 50 times (50 Monte Carlo trials).
Table I reports the percentage of times the ground truth W,
S and H were found correctly among the 50 runs, and
in parenthesis the percentage of elements found wrong on
average. The fifth column (err.) reports the percentage of runs
when the average relative error ∥X−W◦S◦H∥F

∥X∥F
is equal to zero,

and in brackets it reports its value. The last column reports
the average time in seconds needed to generate one BMTF
solution with one niitialization. For the case where W and H

(zW , zS , zH) W S H err. time
(1,2,1) 100% 100% 100% 100% 1.13 s.

(2,2,1) 0%
(21%)

0%
(16%)

99.8%
(0.16‰)

45%
(9%) 1.43 s.

(2,2,2) 0%
(24%)

0%
(24%)

0%
(26%)

0.7%
(28%) 1.32 s.

TABLE I
PERCENTAGE OF TIME THE GROUND-TRUTH FACTORS, OR ZERO ERRORS,
ARE FOUND AMONG THE 50 MONTE CARLO RUNS ON SYNTHETIC DATA
SETS. IN BRACKETS, WE REPORT THE PERCENTAGE OF ENTRIES FOUND

WRONG ON AVERAGE FOR THE FACTORS W, S AND H, AND REPORT THE
AVERAGE RELATIVE ERROR.

are orthogonal (that is, zW=zH=1, first row), the ground-truth
factors are always recovered (on an average using less than
7 initializations). This illustrates two facts: our identifiability
results (Theorem 1) and the fact that our algorithm performs
well as it is able to recover the unique solution in all 50 trials.
For the case W is not orthogonal but H is (second row),
the algorithm can still find the ground-truth H in most cases,
although it cannot recover W and S, which are non-unique:
in fact, in 45% of the trials, BCD finds a solution with a zero
relative error but W and S are not recovered. The problem
becomes even harder when we add the extra nonzeros on H
as well (third row). However, although we cannot recover the
groundtruth, the recovered factors share many entries with it
(about 75%).

Experiment on a real data set. Let us consider an experiment
on the “zoo” real dataset [23]. Each row represents an animal,
and each column represents a characteristic; see Tables II-III
for examples. We have removed some characteristics and some
animals from the dataset as done in [24] (e.g., the characteristic
‘breathes’ which is equal to one for almost all animals) to
obtain a matrix X ∈ {0, 1}99×14. Here, we are considering
(r1, r2) = (5, 3). Over 1500 Monte Carlo trials, each of
which took on average 0.58 seconds, we report the factors
with the lowest error ∥X−W◦S◦H∥F /∥X∥F=33%, which is
relatively high since the ranks chosen are small (r2 = 3) and
real data do not perfectly fit low-rank models. The parameters
considered for W and H were (KW ,KH) = (2, 2). Tables II-
III show the clusters. Because of limited space, we show
only parts of the animals clusters. The interested reader can
rerun the experiment as the code will be made available upon
request. We will now present the matchings that we receive

Aquatic animals: bass, carp, catfish, chub, crayfish,
dogfish, . . . , octopus, penguin, pike, . . . , stingray, tuna
Birds: chicken, crow, dove, duck, flamingo, gnat, . . . ,
parakeet, penguin, pheasant, . . . , vulture, wasp, wren

Mixed cluster: crab, crayfish, flea, frog,
fruitbat, gnat, gorilla, honeybee, . . . , wasp

Aquatic birds: gull, skimmer, skua
Mammals: aardvark, antelope, bear, boar,

buffalo, calf, . . . , vole, wallaby, wolf
TABLE II

CLUSTERS OF ANIMALS.

Birds: feathers, eggs, airborne, less than 4 legs
Mixed: eggs, aquatic, predator, toothed,

fins, less than 4 legs, tail
Mammals: hair, milk, toothed, 4 legs, tail

TABLE III
CLUSTERS OF CHARACTERISTICS.

from the matrix S:

W clusters
H clusters

Birds Mixed Mammals

Aquatic animals 0 1 0
Birds 1 0 0

Mixed cluster 0 0 0
Aquatic birds 1 1 0

Mammals 0 0 1

.

We observe that the clusters make sense. Furthermore, many
animals are assigned to multiple clusters per the property of
BMTF, e.g., the “penguin” is assigned to aquatic animals and
birds, both being correct assignments.

VI. CONCLUSION

In this paper, we introduced Boolean matrix tri-factorization
(BMTF). We gave motivations as to why this model is use-
ful, discussed identifiability, and proposed a BCD algorithm
that includes a clever refinement procedure. Our numerical
experiments show that the BCD algorithm is able to find
good solutions and can be used meaningfully on a real-world
data set. Further work includes a deeper understanding of the
conditions under which BMTF is identifiabile, as done for
example for BMF in [25], [26], the use of BMTF for other
applications, and the development of algorithms scalable to
large-scale data.
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